RNI No.UPBIL/2016/67980

VOL-2* ISSUE-6* September- 2017 Remarking An Analisation

Softly Z* Normal Spaces

Abstract

The aim of this paper is to introduce a new class of softly normal called soft Z*-normality by using Z*-open sets and obtained several properties of such a space. Moreover, we obtain some new characterizations and preservation theorems of soft Z*-normality.

Keywords: π -closed, Z*-closed, α -closed sets, softly Z*-normal spaces. Introduction

In this paper, we introduced the new concept of softly Z*-normal by using Z*-open set due to Ali Mubarki [1] and obtained several properties of such a space. Recently, M. C. Sharma and Hamant Kumar [4] introduced a weaker version of normality called softly-normality and prove that soft-normality is a property, which is implied by quasi-normality and almost-normality and obtained several properties of such space. We prove that soft Z *-normality is a topological property and it is a hereditary property with respect to closed domain subspace. Moreover, we obtain some new characterizations and preservation theorems of softly Z*-normal spaces. Throughout this paper, (X, τ), (Y, σ) spaces always mean topological spaces X, Y respectively on which no separation axioms are assumed unless explicitly stated.

2010 AMS Subject classification

54D15 **Preliminaries** Definition

A subset A of a topological space X is called,

- 1. α -closed [3] if cl(int(cl(A))) $\subset A$.
 - Z*-closed [1] if int(cl(A)) \cap cl(δ -int(A)) \subset A.
- 2. Regular closed [10]) if A = cl(int(A)). 3.

The complement of α -closed (resp. Z*-closed, regular closed) set is called α-open (resp. Z*-open, regular open) set. The intersection of all Z^* -closed sets containing A is called the Z^* -closure of A and denoted Z^* -cl(A). The union of all Z^* -open subsets of X which are contained in A is called the Z^* -interior of A and denoted by Z^* -int(A). The finite union of regular open sets is said to be □-open. The complement of a □-open set is said to be \Box -closed.

Definitions stated in preliminaries, we have the following diagram:

 $closed \ \Rightarrow \ \alpha \text{-}closed \ \Rightarrow \ Z^*\text{-}closed$

However the converses of the above are not true may be seen by the following examples.

Example

Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set $A = \{c\}$ is α -closed set as well as Z*-closed set but not closed set in X.

Remark

Every regular open (resp. regular closed) set is π -open (resp. π -

closed).

Softly Z*- Normalspaces

Definition

A topological space X is said to be Softly normal [4](softly Z*normal) if for any two disjoint closed subsets A and B of X, one of which is π -closed and other is regularly closed, there exist disjoint open(Z*-open)

sets U and V of X such that $A \subset U$ and $B \subset V$.

Almost-normal [7] (almost Z*-normal [5])

If for every pair of disjoint sets A and B, one of which closed and other is regularly closed, there exist disjoint open (Z*- open) sets U and V of X such that $A \subset U$ and $B \subset V$.

Nidhi Sharma

Assistant Professor, Deptt.of Mathematics, N.I.E.T. Greater Noida

Neeraj Kumar Tomar Assistant Professor, Deptt.of Mathematics, N.R.E.C. College,

Khurja

P: ISSN NO.: 2394-0344

Quasi normal [11] (quasi Z*-normal [6])

If for any two disjoint π -closed subsets A and B of X, there exist disjoint open (Z*-open) sets U and

V of X such that $A \subset U$ and $B \subset V$.

π-normal [2]

If for any two disjoint closed subsets A and B of X, one of which is π -closed, there exist disjoint

open sets U and V of X such that $A \subset U$ and $B \subset V$.

Quasi-normal \Rightarrow quasi Z*-normal \Rightarrow soft Z*normal \Rightarrow mildZ*-normal \uparrow

normal \Rightarrow π -normal \Rightarrow almost normal \Rightarrow

softly normal \Rightarrow mildly normal

Where none of the implications is reversible as can be seen from the following examples:

Example

Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X$ }. The pair of disjoint π -closed subsets of X are A = {a} and B = {c}. Also U = {a} and V = {b, c, d} are disjoint open sets such that A \subset U and B \subset V. Hence X is quasi-normal as well as quasi Z*-normal as well as softly Z*-normal because every open set is Z*-open set.

Example

Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then A = {b} is closed and B = {a} is regularly closed sets there exist disjoint open sets U = {b, c, d} and V = { a} of X such that A \subset U and B \subset V. Hence X is almost normal as well as almost Z*-normal as well as softly Z*-normal because every open set is Z*-open set. **Example**

Let X = {a, b, c, d} and τ = { ϕ , {b, d}, {a, b, d}, {b, c, d}, X}. The pair of disjoint closed subsets of X are A = {a} and B = {c}. Also U = {a, b} and V = {c, b} = {c}

d} are Z*-open sets such that $A \subset U$ and $B \subset V$. Hence X is Z*-normal but it is not normal. **Example**

Let X = {a, b, c} and τ = { ϕ , {a}, {a, b}, {a, c},

X}. Then (X, τ) is almost -normal as well as almost Z*-normal, but it is not Z*-normal, since the pair of disjoint closed sets {b} and {c} have no disjoint Z*- open sets containing them. But it is not normal. **Example**

Let X = {a, b, c, d} and τ = { ϕ , {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X}. Then X is Z*-normal. Theorem

For a topological space X, the following are equivalent:

- a. X is softly Z*-normal.
- b. For every π -closed set A and every regularly open set B with A \subset B, there
- c. exists a Z*-open set U such that A \subset U \subset Z*cl(U) \subset B.

Mildly normal [8,9]

RNI No.UPBIL/2016/67980

If for any two disjoint regularly closed subsets A and B of X, there exist disjoint open sets U

and V of X such that $A \subset U$ and $B \subset V$.

By the definitions stated above, we have the following diagrams:

soft Z*-normal⇒mild Z*-normal

For every regularly closed set A and every π-

open set B with A \subset B, there exists a Z*-open set U

such that $A \subset U \subset Z^*$ -cl(U) $\subset B$.

d. For every pair consisting of disjoint sets A and B, one of which is π -closed and the other is regularly closed, there exist Z*-open sets U and V such that A

 \subset U, B \subset V and Z*-cl(U) \cap Z*-cl(V) = ϕ **Proof**

(a) \Longrightarrow (b). Assume (a). Let A be any π closed set and B be any regularly open set such that A \subset B. Then A \cap (X – B) = ϕ where (X – B) is regularly closed. Then there exist disjoint Z*-open sets U and V such that A \subset U and (X – B) \subset V. Since U \cap V= ϕ , then Z*-cl(U) \cap V = ϕ . Thus Z*-cl(U) \subset (X – V) \subset (X – (X – B)) = B. Therefore, A \subset U \subset Z*-cl(U) \subset B.

(b) \implies (c). Assume (b). Let A be any regularly closed set and B be any π -open set such that A \subset B. Then, (X – B) \subset (X – A), where (X – B) is π -closed and (X – A) is regularly open. Thus by (b), there exists a Z*-open set W such that (X – B) \subset W \subset Z*-cl(W) \subset (X – A). Thus A \subset (X – Z*-cl(W)) \subset (X – W) \subset B. So, we let U = (X – Z*-cl(W)), which is Z*-open and since W \subset Z*-cl(W), then (X – Z*-cl(W)) \subset (X – W). Thus U \subset (X – W), hence Z*-cl(U) \subset Z*-cl(X – W) = (X – W) \subset B.

(c) ⇒ (d). Assume (c). Let A be any regular closed set and B be any π -closed set with A \cap B = ϕ . Then A ⊂ (X – B), where (X – B) is π -open. By (c), there exists a Z*-open set U such that A ⊂ U ⊂ Z*-cl(U) ⊂ (X – B). Now, Z*-cl(U) is Z*-closed. Applying (c) again we get a Z*-open set W such that A ⊂ U ⊂ Z*-cl(U) ⊂ W ⊂ Z*-cl(W) ⊂ (X – B). Let V = (X –

P: ISSN NO.: 2394-0344

E: ISSN NO.: 2455-0817

Z*-cl(W)), then V is Z*-open set and $B \subset V$. We

have $(X - Z^*-cl(W)) \subset (X - W)$, hence $V \subset (X - W)$,

thus $Z^*-cl(V) \subset Z^*-cl(X - W) = (X - W)$. So, we have

Z^{*}-cl(U) ⊂ W and Z^{*}-cl(V) ⊂ (X – W). Therefore Z^{*}cl(U) ∩ Z^{*}-cl(V) = ϕ .

(d) \Rightarrow (a) is clear.

Theorem

For a topological space X, the following are equivalent:

- a. X is softly Z*-normal.
- b. For every pair of sets U and V, one of which is π open and the other is regular open whose union is X, there exist Z*-closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- c. For every π -closed set A and every regular open set B containing A, there is a Z*-open set V such that A \subset V \subset Z*-cl(V) \subset B.

Proof

 $\begin{array}{l} (a) \Rightarrow (b). \mbox{ Let } U \mbox{ be a } \pi\mbox{-open set and } V \mbox{ be a } regular \mbox{ open set in a softly } Z^*\mbox{-normal space } X \mbox{ such that } U \cup V = X. \mbox{ Then } (X - U) \mbox{ is } \pi\mbox{-closed set and } (X - V) \mbox{ is regular closed set with } (X - U) \cap (X - V) = \phi. \mbox{ By soft } Z^*\mbox{-normality of } X, \mbox{ there exist disjoint } Z^*\mbox{-open sets } U_1 \mbox{ and } V_1 \mbox{ such that } X - U \subset U_1 \mbox{ and } X - V \subset V_1 \mbox{ . Let } G = X - U_1 \mbox{ and } H = X - V_1. \mbox{ Then } G \mbox{ and } H \mbox{ are } Z^*\mbox{-closed sets such that } G \subset U, \qquad H \subset V \mbox{ and } G \cup H = X. \end{array}$

(b) \Rightarrow (c) and (c) \Rightarrow (a) are obvious.

Using Theorem 3.7, it is easy to show the following theorem, which is a Urysohn's Lemma version for soft Z^* -normality. A proof can be established by a similar way of the normal case. **Theorem**

A space X is softly Z*-normal if and only if for every pair of disjoint closed sets A and B, one of which is π -closed and other is regularly closed, there exists a continuous function f on X into [0, 1], with its usual topology, such that f(A) = {0} and f(B) = {1}.

It is easy to see that the inverse image of a regularly closed set under an open continuous function is regularly closed and the inverse image of a π -closed set under an open continuous function π -closed. We will use that in the next theorem.

Theorem

Let X is a softly Z*-normal space and f : X

 \rightarrow Y is an open continuous injective function. Then f(X) is a softly Z*-normal space.

Proof

Let A be any π -closed subset in f(X) and let B be any regularly closed subset in f(X) such that A \cap B = ϕ . Then f⁻¹(A) is a π -closed set in X, which is disjoint from the regularly closed set f⁻¹(B). Since X is softly Z*-normal, there are two disjoint open sets U

and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Since f is one-one and open, result follows.

Corollary

Soft Z*-normality is a topological property.

VOL-2* ISSUE-6* September- 2017 Remarking An Analisation

Lemma

Let M be a closed domain subspace of a

space X. If A is a Z*-open set in X, then A \cap M is Z*-open set in M.

Theorem

A closed domain subspace of a softly Z*normal is softly Z*-normal.

Proof

Let M be a closed domain subspace of a softly Z*-normal space X. Let A and B be any disjoint closed sets in M such that A is regularly closed and B

is π -closed. Then, A and B are disjoint closed sets in

X such that A is regularly closed and B is π -closed in X. By soft Z*-normality of X, there exist disjoint Z*-

open sets U and V of X such that $A \subset U$ and $B \subset V$.

By the Lemma 3.12, we have $U \cap M$ and $V \cap M$ are

disjoint Z*-open sets in M such that $A \subset U \cap M$ and

 $B \subseteq V \cap M$. Hence, M is softly Z*-normal subspace. Since every closed and open (clopen) subset is a closed domain, then we have the following corollary. **Corollary**

Soft Z*-normality is a hereditary with respect to clopen subspaces.

Conclusion

In this paper, we have introduced weak form of normal space namely soft Z*-normality and established their relationships with some weak forms of normal spaces in topological spaces.

References

- Ali Mubarki, Z*-open sets and Z*-continuity in topological spaces, Internat. J. of Math. Archive, 3(1), 2012, 118 -125.
- 2. L. N. Kalantan, π-normal toplogical spaces, Filomat 22:1 (2008), 173-181.
- O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- M.C.Sharma and Hamant Kumar, Softly normal topological spaces accepted for publication in the Journal of Acta Ciencia Indica.
- M. C. Sharma and Poonam Sharma, Almost Z*normal spaces, J. Math. Sci. Vol.7(4), 2012,343-350.
- M. C. Sharma and Poonam Sharma, Quasi Z*normal spaces, Acta Ciencia Indica, XXXIX M 2013 No.4, 437- 442.
- M. K. Singal and S. P. Arya, Almost normal and almost completely regular spaces, Glasnik Mathematicki Tom 5(25) 1(1970), 141-152
- 8. M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1973), 27-31.
- É. V. Shchepin, Real functions and near normal spaces, Sibirskii Mat. Zhurnal, 13(1972), 1182-1196.
- 10. *M.* Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc. 41(1937), 374 481.
- V. Zaitsev, On certain classes of topological spaces and their biocompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778 -779.